
An Adaptive Fault-Tolerant Memory System for FPGA-based Architectures in

the Space Environment

Dan Fay, Alex Shye, Sayantan Bhattacharya, and Daniel A. Connors

University of Colorado

{faydr, shye, bhattacs, dconnors}@colorado.edu

Steve Wichmann

Redefine Technologies

{steve}@redefine.com

1 Abstract

Ionizing radiation at high altitudes above the Earth ad-

versely affects electronic systems in various ways. For

these reasons, high-density, SRAM-based FPGA (Field Pro-

grammable Gate Array) systems have historically been un-

suitable for use in space due to their higher susceptibil-

ity to radiation-induced Soft Error Upsets (SEUs). How-

ever, there are a number of reasons for pursuing the deploy-

ment of adaptive FPGA-based designs in spacecraft systems

and satellites. Frequently mission requirements change and

FPGA systems are a mutable low-cost electronic fabric ca-

pable of adjusting to new design constraints after a system

is initially released. Moreover, an adaptive FPGA design

can attenuate the amount of fault tolerance in the system to

the specific levels of radiation and the amount of available

power, resources, and performance. Previously, the Triple3

Redundant Space Systems (T3RSS) approach demonstrated

the use of partial reconfiguration of FPGA logic to ensure

fault tolerance in FPGA-based space systems. This paper

explores the issues germane to developing a reliable, high-

performance memory system for FPGA architectures that

seamlessly withstands both radiation-induced SEUs and

permanent failures in space system hardware components.

2 Introduction

2.1 Using FPGAs in Space

FPGA (Field Programmable Gate Array) devices, like

other electronics at high altitudes, are subject to ionizing

radiation that adversely affect electronics in various ways.

Radiation can cause both short-term and permanent device

failures. In the short term, they can cause transient upsets

in circuits known as Single Event Upsets (SEUs). SEUs oc-

cur when an energetic particle (typically a proton, neutron,

or heavy ion) collides with atoms in the silicon lattice and

leaves electric charges in its wake. SEUs can cause state

bits to change and logic outputs to evaluate incorrectly. Ad-

ditionally, radiation can cause permanent damage to silicon

devices over time, rendering all or part of the device unus-

able.

Some FPGAs are more susceptible to these upsets than

others: FPGAs which hold their programming information

in either antifuses or EEPROMs are less susceptible to up-

sets in their configuration memory than are SRAM-based

FPGAs [1]. As a result, SRAM-based FPGAs have his-

torically been less desirable for use in critical spacecraft

electronics. SRAM-based FPGAs, however are worth con-

sidering as an alternative to antifuse-programmed FPGAs.

SRAM-based FPGAs are based on the newest commercially

available manufacturing processes and therefore have supe-

rior performance, density, and power/heat dissipation char-

acteristics over other FPGA technologies.

The newest SRAM-based FPGA devices provide a run-

time tool for detecting and eliminating these configuration

faults: partial reconfiguration. Partial reconfiguration al-

lows part of the FPGA to be reprogrammed while the rest of

the FPGA continues to run uninterrupted. Partial reconfig-

uration detects errors within the configuration memory and

reprograms the faulty configuration to its original operation

through a technique known as scrubbing.

2.2 The Need For Adaptability

An FPGA-based space system can rapidly adapt to

changing mission conditions and requirements. With the

FPGA capable of reforming hardware for new functionality,

FPGAs can relocate functionality to other parts of the FPGA

system in the event the system suffers from permanent, hard

failures in electronic circuitry. However, the more likely

scenario is for the system to adaptively increase and de-

crease the fault tolerance as needed, since fault tolerance

schemes incur significant penalties in terms of logic uti-

lization, memory utilization, and power consumption/heat

dissipation. Adaptable fault tolerance is useful for attenu-

ating to varying radiation conditions. If, for example, the

spacecraft is going to be experiencing high levels of radi-

ation (such as solar storms, passing through the Van Allen

radiation belts, or passing over the South Atlantic Anomaly)

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Legend

m

Control

Attitude

Attitude

Control

Noise

Rem.

Telem.

Telem.

FPGA

Memory

Logic
Region

Non−functional

FPGA−FPGA
Interconnect

Memory
Region

Telemetry

Attitude Control

Noise Removal

Memory
Region

Data
With Backup

Figure 1. The proposed T3RSS system with
attached memory.

it should be able to remove non-essential functionality (such

as off-line image or signal processing) and use the available

logic to increase the fault tolerance of more-critical elec-

tronics (such as attitude control or telemetry).

3 Improving the Reliability of SRAM-based

FPGAs

For SRAM-based FPGAs to be a viable alternative to

rad-hard components in space, it is essential to improve

their reliability. Our approach, known as Triple3 Redun-

dant Spacecraft Systems (T3RSS) [3], applies the goals of

the JPL REE project [4], that is, making a high performance

reliable spacecraft system out of low-cost Commercial Off-

The-Shelf (COTS) parts, to develop reconfigurable systems

for small satellites and spacecraft.

3.1 System­Level Design

The T3RSS system allows for mission survivability

through failure of entire devices by providing complete

device-level redundancy. Figure 1 shows the proposed

T3RSS board. This board will contain multiple FPGAs,

with each FPGA having its own local, directly-attached

memory. Each FPGA is directly connected to each of the

other FPGAs using dedicated point-to-point links. Figure

1 also illustrates the possible failure modes for the T3RSS

FPGA system: partial failure of one or more FPGAs, com-

plete failure of one or more FPGAs, partial failure of one or

more memories, and complete failure of one or more mem-

ories.

The symmetric design makes it straightforward for the

system to adapt to any of the aforementioned failure modes.

If a device should fail, its functionality can be seamlessly

moved to another FPGA-memory pair. A point-to-point net-

work allows all of the FPGAs to directly access the other

FPGAs and their attached memory. The T3RSS architec-

ture allows a given FPGA to use other FPGAs’ memory as

a remote backup to preserve important program data in the

event of device failure, or merely to provide an added level

of protection against SEUs.

A point-to-point FPGA interconnection topology is more

reliable than using a shared bus: if one of the FPGAs fails,

it can only take down the links connected to itself, whereas

a shared bus becomes a single point of failure. Addition-

ally, point-to-point links provide lower latency and more de-

terministic operation than does having to use a shared bus,

helping to ensure proper real-time performance.

3.2 Logic­level Fault Tolerance

To provide complete logic-level reliability, T3RSS pro-

vides several different error mitigation approaches, each

one designed to deal with a particular source of faults. Since

the low-level logic is susceptible to SEUs, all of the logic

is triplicated using the proven Triple Modular Redundancy

(TMR) technique [8]. This technique triplicates all of the

logic. If an error occurs in one of the copies of the logic, a

voter scheme chooses the correct result. The T3RSS design

also triplicates the nonvolatile storage and access to external

peripherals.

T3RSS deals with errors in the configuration memory

and hard errors in parts of the FPGA using partial reconfig-

uration, which allows for changing parts of the FPGA while

running. T3RSS uses partial reconfiguration for relocating

functionality around hard failures within the FPGA fabric

as well as to scrub out errors in the configuration memory.

By reading in the current configuration, checking it for er-

rors, and reconfiguring the FPGA area with a clean config-

uration, errors in the FPGA’s configuration can be scrubbed

out without interrupting running functionality.

4 Memory System Design

A reliable, distributed multi-FPGA-based system needs

a reliable, distributed memory system to go with it. While

there are many different memory systems that provide vary-

ing degrees of fault tolerance, a distributed, multi-FPGA

system specifically needs a memory system and intercon-

nection network that has no single point of possible failure

and keeps up-to-date copies of the memory’s data directly

accessible by the other FPGAs. These additional copies are

necessary in the event the local FPGA’s memory becomes

corrupted.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Memory Technology B/W (GB/s) I/O B/W (GB/s) Cost (LUTs) I/O Count

SDRAM (PC133) 1.0 (2.0) PCI32 [14] 0.264 506 55

DDR SDRAM (DDR266) 2.1 (4.2) PCI-X [16] 1.0 1074 94

DDR2 SDRAM (PC5300) 5.3 (10.6) x4 PCI-E [15] 2.0† 10550 4††

RapidIO [17] [18] 1.0 7000†††† 20†††

HyperTransport [12] 1.6† 4404 42

Machine Mem. (GB/s) FPGA Size (slices) Num. I/Os Num. MGTs

SRC MAP Processor [9] 11.2 Xilinx XC2VP30 [19] 30,816 644 8

Maxwell SCS750 [7] 0.768 Xilinx XC4VLX160 [20] 152,064 960 0

† Full duplex. Actual bandwidth in either direction is half of the stated figure.
†† Number of high-speed Multi Gigabit Transceivers (MGTs) required.
††† Number of Low Voltage Differential Signaling (LVDS) pin pairs required.
†††† Includes size of Physical Layer (PHY) and Link/Transport Layer.

Table 1. Comparison matrix of the bandwidths of current I/O and memory technologies along with
the memory bandwidths available to popular aerospace computers as well as the resources available
on two representative Xilinx FPGAs.

4.1 High­level System Architecture

Providing data integrity when one or more FPGAs (or

their memories) fail requires redundant information to be

stored on the other FPGAs’ memories. As a result, the

memory system should distribute changed data to the other

FPGAs’ memories. Additionally, such a memory system

should also be able to periodically compare the local data

against the extra data on the other FPGAs to ensure correct-

ness of the local copy. Figure 1 shows how the distributed

memory system keeps copies of the data off-chip. Keeping

these off-FPGA remote copies up to date requires poten-

tially large amounts of off-chip interconnect bandwidth.

Table 1 shows the bandwidths of different memory tech-

nologies. The three SDRAM configurations assume the

commonly-used case of a 64-bit (or 128-bit) wide memory

channel. Additional memory bandwidth is possible at the

cost of using more FPGA I/Os and more complicated cir-

cuit boards. The last two rows show the memory bandwidth

available to two popular aerospace computers. The first

one, the SRC MAP [9] processor, is an embedded reconfig-

urable computer that uses Xilinx FPGAs to implement high-

performance algorithms such as synthetic aperture radar and

automatic target recognition. The Maxwell SCS750 [7] is a

space-qualified computer that uses three IBM PowerPC 750

microprocessors running in lockstep. The lower-right hand

corner of Table 1 provides two representative FPGAs to il-

lustrate the large proportion of FPGA resources these I/O

standards require.

The fault tolerant distributed memory subsystem should

be able to protect the memory system at as close to full

memory bandwidth as possible. Since the off-chip connec-

tions are slower (both by having less bandwidth and experi-

encing a higher latency) than the on-chip connections, large

amounts of memory traffic to the fault-tolerant memory sys-

tem can seriously impact system performance and prevent

the application from taking full advantage of the local mem-

ory’s bandwidth.

Implementing higher bandwidth links is one option,

however there is ultimately a limit to how fast the inter-

FPGA links can be. To increase the link bandwidth, one can

either make the connections wider, which consumes more

FPGA I/O pins, or increase the clock speed of the inter-

FPGA link. Both of these have limits caused by limited

FPGA resources. Table 1 compares the I/O and logic re-

source requirements of several different I/O technologies:

standard PCI, PCI-X, PCI Express, RapidIO, and Hyper-

Transport. PCI definitely does not have enough bandwidth;

while the other technologies may be able to provide suf-

ficient bandwidth, they are impractical to implement on

the FPGA: PCI-X consumes too many I/O pins, and PCI

Express, RapidIO, and HyperTransport consume too many

logic resources (particularly when one considers that apply-

ing TMR to logic increases its size by roughly 3.2x [10]).

As a result, it is necessary to investigate different band-

width reducing strategies such as distributed error checking,

posted writes, caching, and shadow (background) fault de-

tection and correction that minimize the amount of off-chip

bandwidth generated. In addition, it will be necessary to in-

vestigate the best way to preserve program state, including

deciding what parts of a program actually need to be placed

in fault-protected memory.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

4.2 Different Approaches to Implementing Fault
Tolerance

There are a variety of ways to improve the reliability of

a memory system. Basic single bit error detection with-

out correction can be accomplished using parity check-

ing. More sophisticated error detection uses checksumming

techniques such as CRCs or MD5 signatures. When error

correction is desired, different error-correcting codes (ECC)

such as Hamming or Reed-Solomon codes can correct for

one or more bit errors.

Another way to implement a fault tolerant memory sub-

system is to make multiple copies of the data. These afore-

mentioned techniques are also orthogonal and can be used

together. One way is to implement the memory as a RAID

array, which servers using the Chipkill [5] technology as

well as the Compaq Alpha 21364 [2] employ to improve

fault tolerance over ECC-protected memory alone. RAID,

short for Redundant Array of Independent Disks, can im-

plement redundancy by distributing a piece of data across

multiple disks (or in this case, FPGA memories) in such a

way that any one (or two, in the case of RAID level 6) disks

(or memories) can fail without corrupting the stored data.

These fault tolerance schemes can be used with FPGA-

external memory or with the FPGA’s internal Block RAM

(BRAM).

4.3 Adaptable Fault Tolerance

Different applications have different reliability require-

ments: some applications must function without errors for

months or years on end, while other applications can safely

suffer periodic faults. The memory system should take these

varying fault tolerance needs into account, as additional

fault protection consumes valuable hardware resources that

could be used for additional functionality and/or adds addi-

tional cost to the mission. Moreover, the actual vulnerabil-

ity of an application to faults can vary, not only between ap-

plications but also between different parts of the program.

Output data for critical control systems would likely need

full protection; however, temporary variables, such as those

on the stack, may not need as much protection. Similarly,

program data or read-only variables might not need dis-

tributed, multi-FPGA protection, as they can be reloaded

from nonvolatile storage if found to be corrupt.

The effect that a fault has on program execution can be

classified into the following categories [11]:

• Benign Fault: A transient fault which does not prop-
agate to affect the correctness of an application is con-

sidered a benign fault. A benign fault can occur for a

number of reasons. Examples include a fault to unused

data or a fault to dead (unreachable) code.

Benchmark Function

bisort Sorting and merging bitonic sequences

fir Finite Impulse Response filter

mm Floating-point matrix multiply

treeadd Adds values to a tree data structure

tsp Traveling-salesman problem

wave Wavefront computation

dag Directed Acyclic Graph

fact Factorial calculation

Table 2. A list of the benchmarks studied.

• Silent Data Corruption (SDC): A transient fault
which goes undetected and propagates to corrupt pro-

gram output is considered an SDC. Note that these er-

rors are not always serious; a single bit flip in a digi-

tal image, for example, would appear merely as a tiny

amount of noise.

• Detected Unrecoverable Error (DUE): A transient
fault which is detected without possibility of recovery

is considered a DUE. Such an error can either cause

obviously incorrect execution or force a processor or

FPGA reset.

5 Experimental Methodology

In order to investigate how best to design an adaptive

fault tolerant system, we studied the fault vulnerability and

memory traffic of the benchmarks shown in Table 2.

5.1 Fault Injection

Application vulnerability was investigated by simulat-

ing SEUs in processor registers and in memory via four

fault injection campaigns. The fault injection infrastructure

uses the Intel Pin dynamic binary instrumentation tool [6]

to study the effect of injecting faults into the source and

destination registers of instructions, the BSS segment, the

DATA segment, and the STACK segment. Each fault injec-

tion campaign runs each benchmark one thousand times. In

each run, the fault injector uses an instruction profile and a

dynamic instruction count to pick a random static instruc-

tion. Pin then proceeds to instrument the instruction. When

the program reaches the corresponding dynamic count, the

instrumentation code flips a random bit in a register or in

one of the three memory regions. The result of each fault

injection run is placed into 5 categories:

• Correct. The fault is benign and the program contin-
ues to completion and exits with a valid return code

and valid output data.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

MicroBlaze
Processor

OPB
Bus

Bus
Connection

OPB
Peripheral

BRAM
Block

Legend

OPB

Mon.

O
P

B
−

O
P

B
 B

ri
d

g
e

UART

UART

Cntlr.

BRAM

Main

B
R

A
M

Cntlr.

BRAM

Main

B
R

A
M

B
R

A
M

BRAM

Shared

Cntlr.

Shared

BRAM

Cntlr.

MicroBlaze

MicroBlaze

UART

Timer

MicroBlaze

Monitor

B
R

A
M

Monitor System Test System

Test

Test

Figure 2. A block diagram of the memory traf­
fic analyzer.

• Failed. The program performs an illegal operation
which immediately halts execution, (e.g. bus error,

segmentation violation) resulting in a DUE.

• Abort. The program exits with an invalid return code.
In this case, the application itself has detected an error

and aborts execution resulting in a DUE.

• Timeout. The fault causes the program to hang indef-
initely. If the system has a timeout mechanism, this

case can be considered a DUE.

• Incorrect. The program continues to completion, ex-
its with a valid return code, but the resulting data is

incorrect. This results in an SDC, which is the worst

possible outcome.

5.2 Memory Access Patterns

To examine the memory access patterns, an FPGA-based

test apparatus was implemented on a Xilinx Virtex-II Pro-

based [19] Digilent XUPV2P-based board [21]. Figure 2

shows a block diagram of the test setup as implemented on

the FPGA. Implemented on the board are two separate Mi-

croBlaze [13]-based systems: the test system and the mon-

itor system. The test system runs the benchmark under test

while the monitor system observes the behavior of the test

system.

The test system consists of one (or two) MicroBlaze mi-

croprocessors responsible for executing the test program(s).

The MicroBlaze interfaces with the Main OPB, which is at-

tached to the OPB-OPB monitor bridge. The OPB-OPB

monitor bridge provides snoop information to the OPB

monitor. The other side of the OPB-OPB monitor bridge

attaches to the Secondary OPB, to which the MicroBlaze’s

main memory and its UART interface.

The monitor system consists of its own MicroBlaze pro-

cessor, which has its own Tightly-Coupled Memory for its

code and data. Its OPB is attached to the OPB monitor, a

Programmable Interval Timer (PIT), and a UART. The OPB

monitor is a custom block used to monitor and log the traffic

information provided by the OPB-OPB monitor bridge. Be-

fore starting a program, the monitor MicroBlaze programs

this part with base and high address ranges. The OPB mon-

itor then counts every access within that address range.

Each MicroBlaze also has access to a block of shared

memory. This block of memory is used to implement com-

munication between the monitor MicroBlaze and the execu-

tor MicroBlaze. Upon configuring the FPGA with the test

pattern, the executor system’s processor spins on a variable

in the shared memory. The executor processor continues to

spin until the monitor processor is completely set up and

able to begin collecting samples. Once the monitor proces-

sor is ready, it sets the shared variable, telling the executor

system to begin program execution. At every PIT interrupt,

the monitor system records the number of memory accesses

that occurred in that interval. At every interrupt, the monitor

system checks another shared variable in the shared mem-

ory that the executor system sets when it completes the pro-

gram. The setting of this variable tells the monitor system

to stop sampling and to prepare for uploading the collected

data.

6 Experimental Results

6.1 Application Vulnerability

There are major differences in the vulnerability profiles

of various applications. Figure 3 shows the vulnerability of

a set of selected applications divided into register faults and

three memory segments: DATA, BSS, and STACK. All of

the applications show significant vulnerability to faults in-

jected into the register. Register vulnerability is high since

data stored in registers is used frequently and involved in

multiple computations. The memory fault injection selects

random locations in memory regardless of usage, and has

an overall lower vulnerability. However, the experiment

highlights that the memory vulnerability is different for var-

ious sections and uses of memory. Generally, BSS segment

data errors do not propagate to faults, except in the case of

large array structures such as used in matrix multiply (mm).

STACK memory for selected applications has higher vulner-

ability, while the DATAmemory section has almost uniform

rates of natural protection against errors. These results mo-

tivate the use of an adaptive memory system that can be cus-

tomized to the native characteristics of a diverse workload

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Figure 3. Fault vulnerability of different applications.

BRAM Read Traffic across Different Benchmarks

Time Interval

0 2500 5000 7500 10000 12500 15000 17500

B
R

A
M

 R
e
a
d
s
 i
n
 e

a
c
h
 i
n
te

rv
a
l
(l
in

e
a
r)

800

850

900

950

1000

1050
bitonic

treadd

dag

tsp

mm

fir

wave

fact

BRAM Write Traffic across Different Benchmarks

Time Interval

0 2500 5000 7500 10000 12500 15000 17500

B
R

A
M

 w
ri
te

s
 i
n
 e

a
c
h
 i
n
te

rv
a
l
(l
in

e
a
r)

0

25

50

75

100

125

150
bitonic

treadd

dag

tsp

mm

fir

wave

fact

Figure 4. Total BRAM traffic (reads and writes)

by benchmark.

BRAM Read Traffic in FIR with different Microarchitectural Setups

Time Interval

0 2500 5000 7500 10000 12500 15000 17500

B
R

A
M

 r
e
a
d
 i
n
 e

a
c
h
 i
n
te

rv
a
l
(l
in

e
a
r)

0

500

1000

1500
fir

fir with 4K icache

fir with 4K dcache

fir with 4K dcache & 4K icache

fir with second "interfering"

 application running

BRAM write Traffic in FIR with different Microarchitectural Setups

Time Interval

0 2500 5000 7500 10000 12500 15000 17500

B
R

A
M

 w
ri
te

 i
n
 e

a
c
h
 i
n
te

rv
a
l
(l
in

e
a
r)

0

50

100

150
fir

fir with 4K icache

fir with 4K dcache

fir with 4K dcache & 4K icache

fir with second "interfering" prcessor

Figure 6. Microarchitectural features and their

effects on memory traffic.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

DATA BSS STACK CODE

0.01

0.1

1

10

100

1000

10000

100000

fir

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

se
s

DATA BSS STACK CODE

0

0.01

0.1

1

10

100

1000

10000

100000

mm

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

se
s

DATA BSS STACK CODE

0.01

0.1

1

10

100

1000

10000

100000

tsp

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

se
s

DATA BSS STACK CODE

0.01

0.1

1

10

100

1000

10000

100000

treadd

Rd (Max)

Rd (Mean)

Wr (Max)

Wr (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
es

se
s

DATA BSS STACK CODE

0

0.01

0.1

1

10

100

1000

10000

100000

fact

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

ss
e

s

DATA BSS CODE

0

0.01

0.1

1

10

100

1000

10000

100000

wave

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

se
s

DATA BSS STACK CODE

0

0

0

0.01

0.1

1

10

100

1000

10000

100000

dag

Rd (Max)

Rd (Mean)

Wr (Max)

Wr (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

ss
e

s

DATA BSS STACK CODE

0.01

0.1

1

10

100

1000

10000

100000

bitonic

Rd (Max)

Rd (Mean)

W r (Max)

W r (Mean)

Memory Segment

M
e

m
o

ry
 A

cc
e

ss
e

s

Figure 5. BRAM traffic by program section.

of applications.

6.2 Memory Traffic Analysis

Figure 4 shows the overall memory traffic for the system.

There exists a large variability in the read and write traf-

fic between applications, and within each benchmark over

time. The rapid change in application memory traffic, both

over long periods as well as over short intervals, stresses

the difficulty in providing low latency memory accesses and

fault tolerance through redundancy. During these time peri-

ods, a memory system may not meet real-time deadlines if

the system is trying ensure fault tolerance by triplicating all

memory reads and writes.

Figure 5 shows the memory traffic for specific regions of

memory: the STACK segment, the BSS segment, the CODE

segment, and the DATA segment. The STACK segment ex-

periences significant memory read and write traffic, more so

than the DATA segment. Since the stack holds mainly tem-

porary variables and procedure call data, these results sug-

gest that backing up only the DATA segment data will allow

the memory system to achieve high performance without

undue off-chip memory traffic. None of the applications

experience significant BSS read traffic. The CODE segment

reads make up the majority of the total BRAM reads. This

suggests that storing the instructions separately either in a

cache or in a tightly-coupled memory can significantly re-

duce memory read traffic.

Figure 6 shows the effects on overall memory read and

write traffic after adding a 4KB instruction cache (I-cache)

to the MicroBlaze. The addition of this cache was ex-

tremely effective in reducing read BRAM traffic; however,

it also had the effect of significantly increasing write traffic.

Since the I-cache allows the MicroBlaze processor to exe-

cute more instructions per cycle, the system does not need

to go out over the OPB to fetch every instruction. As a re-

sult, the fir application executes significantly faster, and

thus produces new data requests at a higher rate. The addi-

tion of a D-cache is also shown and also clearly increases

the throughput of the data processed by the fir applica-

tion. The trade-off is an increase in the amount of memory

accesses, as the write-through D-cache has to constantly up-

date the main memory with the increased load of the data.

The overall effect of adding both an I-Cache as well as

a D-cache to the system clearly increases the throughput of

the data generated at reduced memory access rates as shown

in Figure 6. In short, these results show that design trade-

offs such as I-cache and D-cache components (as well as

other components affecting the memory access rate), must

not only be considered for performance but also for their im-

pact in providing fault tolerance to a memory system design.

Figure 6 also shows the decrease in application performance

(25% in the case of reads) due to the addition of an interfer-

ing program running on a third MicroBlaze processor. The

reduction in the number of memory accesses by the main

process in the same interval of time clearly demonstrates

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

the bus contention between the two application processes.

7 Conclusion

We have presented the T3RSS space hardware system,

and motivated the need for a memory system that can pro-

vide adaptive distributed fault tolerance by storing data on

the memory of multiple FPGAs. Such a system cannot

blindly access the other FPGAs’ memories on every mem-

ory access, however, or memory performance will be ad-

versely affected. Therefore, it is necessary to employ var-

ious techniques to minimize the amount of off-chip traffic

generated.

One way to reduce the off-chip traffic is to only distribute

off-chip the parts of the program that are highly susceptible

to faults leading to incorrect program execution. Doing this

can greatly reduce off-chip accesses, as it is often the case

that there is relatively little traffic to/from the most suscep-

tible parts of the program.

Future work will entail implementing and testing new

distributed fault-tolerant memory systems. We will study

the overall performance and fault tolerance of on-chip and

off-chip fault tolerance techniques. We will also study their

effectiveness in the wake of changing conditions such as

increasing SEU rates, hard failures of parts of the FPGA,

and changes in mission requirements.

References

[1] Single-event effects in fpgas. Web site:

http://www.actel.com/documents/FirmErrorPIB.pdf,

2006.

[2] Alpha ev7 processor: A high-performance

tradition continues, April 2002. Web site:

http://h18002.www1.hp.com/alphaserver/download/

Compaq EV7 Wp.pdf.

[3] S. W. et al. Partial reconfiguration across fpgas. In Pro-

ceedings of Military and Aerospace Applications of Pro-

grammable Devices and Technologies Conference, Septem-

ber 2006.

[4] D. S. Katz and P. L. Springer. Development of a spaceborne

embedded cluster. In Proceedings of the IEEE International

Conference on Cluster Computing, November 2000.

[5] D. Locklear. Chipkill correct memory architec-

ture technology brief, August 2000. Web site:

http://www.ece.umd.edu/courses/enee759h.S2003/ ref-

erences/chipkill.pdf.

[6] C.-K. Luk and et al. Pin: Building customized program anal-

ysis tools with dynamic instrumentation. In Proceedings of

the ACM SIGPLAN 2005 Conference on Programming Lan-

guage Design and Implementation, June 2005.

[7] Scs750 single board computer for space. Web site:

http://www.maxwell.com/pdf/me/product datasheets/sbc/

scs750 rev6.pdf, February 2007.

[8] N. Rollins, M. J. Wirthlin, M. Caffrey, and P. Graham. Eval-

uating tmr techniques in the presence of single event up-

sets. In Proceedings of Military and Aerospace Applica-

tions of Programmable Devices and Technologies Confer-

ence, September 2003.

[9] Map processor, 2006. Web site:

http://srccomputers.com/Product Sheets/SRC MAP 69226-

BD.pdf.

[10] Tmrtool product information brief. Web site:

http://www.xilinx.com/esp/mil aero/collateral/tmrtool sellsheet wr.pdf,

2006.

[11] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Rein-

hardt. Techniques to reduce the soft error rate of a high-

performance microprocessor. In Proceedings of the 31st

Annual International Symposium on Computer Architecture

(ISCA), 2004.

[12] Hypertransport single-ended slave, October 2003. Web site:

http://www.xilinx.com/systemio/htses/hypertransport ds.pdf.

[13] Microblaze processor reference guide. Web site:

http://www.xilinx.com/ise/embedded/mb ref guide.pdf,

June 2006.

[14] Pci 64/32 interface v3 and v4. Web site:

http://www.xilinx.com/partinfo/pci/pci ds207.pdf, July

2006.

[15] Pci express endpoint cores v3.3. Web site:

http://www.xilinx.com/bvdocs/ipcenter/data sheet/

pci exp ep ds506.pdf, September 2006.

[16] Pci-x interface v5 and v6. Web site:

http://www.xilinx.com/pci/docs/pcix 6466/pcix ds208.pdf,

July 2006.

[17] Rapidio logical (i/o) and transport layer interface v3.1. Web

site: http://www.xilinx.com/ipcenter/catalog/logicore/docs/

rio log io ds.pdf, July 200.

[18] Serial rapidio physical layer core v3.1. Web site:

http://www.xilinx.com/bvdocs/ipcenter/data sheet/

srio phy ds.pdf, July 2006.

[19] Virtex-ii pro and virtex-ii pro x platform

fpgas: Complete data sheet. Web site:

http://direct.xilinx.com/bvdocs/publications/ds083.pdf,

October 2005.

[20] Xilinx ds112 virtex-4 family overview, data sheet. Web site:

http://direct.xilinx.com/bvdocs/publications/ds112.pdf, Jan-

uary 2007.

[21] Xilinx university program virtex-ii pro development system.

Web site: http://digilentinc.com/Data/Products/XUPV2P/

XUPV2P User Guide.pdf, March 2005.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

